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Abstract 
The cellular Yule-Nielsen modified spectral 

Neugebauer (CYNSN) model is widely used to predict 

the spectral response of inkjet printers. Inversion of 

the model is often implemented as a constrained 

optimization problem minimizing the difference 

between a desired reflectance and a model-predicted 

one. Inversion of CYNSN is considered to be 

computationally expensive. The Linear Regression 

Iteration (LRI) algorithm, already effectively used for 

the inversion of the simple YNSN model, is 

investigated as an efficient optimization method for 

inverting CYNSN. The proposed approach introduces 

a novel means for transitioning optimized choices 

from one cell to the neighboring cell. These 

transitions ensure the global consistency of the results. 

The matrices used by the LRI method can be 

calculated in advance for each cell and then arranged 

in a special scheme to allow fast access. This 

precalculated matrix scheme vastly increases the 

speed of inversion by reducing the algorithm to two 

simple steps for each iteration: choice of correct 

matrix and two simple matrix-vector multiplications. 

 

Introduction 
Maintaining spectral accuracy when printing a 

multispectral image requires the ability to choose 

suitable printer control values that produce 

appropriate spectral reflectances on the medium. This 

process is called spectral separation and often requires 

the inversion of an adequate printer model.  The 

forward model is a prediction function, from control 

value space into spectral space. Various Printer 

models have been proposed in the past. Wybel and 

Berns1 give an overview of common printer models.  

 

Because of its simplicity and accuracy the 

Yule-Nielson modified spectral Neugebauer model 

(YNSN) is widely used in practice. Neugebauer’s 

colorimetric model2,,3 was modified by Yule et al.4,5 to 

consider optical dot gain. Viggiano applied the idea to 

the spectral case6,7. 

 

To further improve the spectral accuracy of the YNSN 

model more measurements than the Neugebauer 

primaries can be considered (Heuberger et al.8). For 

this reason the control value space can be subdivided 

into cells and the YNSN model can be applied in each 

cell utilizing the cell corners as primaries in place of 

the Neugebauer primaries. The location of the 

additional primaries can be optimized to minimize the 

maximal spectral RMS error (see Chen et al.9) 

 

Unfortunately, an analytical inversion of the cellular 

Yule-Nielson modified spectral Neugebauer model 

(CYNSN) is not possible. Therefore, iterative 

inversion methods have to be used. An additional 

problem is the limited spectral gamut of common 

printers. A perfect spectral reproduction is typically 

not realizable and spectral gamut mapping10 is 

necessary. The inversion problem can be described by 

a constrained optimization problem: minimize the 

difference between a desired reflectance spectrum and 
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the model prediction subject to ink constraints of the 

device. 

 

Figure 1. CYNSN model for a CMY printer.  

 

To invert the simple YNSN model various approaches 

have been proposed using standard numerical 

optimization techniques 11,12,13,14. 

 

Urban et al.15 proposed the Linear Regression 

Iteration (LRI) method that uses some special 

properties of the YNSN model and consist mainly in 

two simple matrix-vector multiplications. Here, the 

LRI method is extended to a CYNSN model. 

 

In the following, discrete spectra are used, sampling at 

N wavelengths, so that each reflectance is a N  

dimensional vector. 

 

The CYNSN Model 
The CYNSN model is based on a subdivision of the 

colorant cube into smaller cuboid cells (see Figure 1). 

In order to fit the model to the printer the control 

values representing the cell vertices are typically 

printed and the corresponding reflectance spectra 

measured.  

For a printer with m  colorants a CYNSN model 

with k  grid points in each dimension has 
mk )1( −  cells. Each cell has m2 vertices that we 

denote in the control value space by 

m
II 10∈vv

1-m20
],[,,K  

and in reflectance space by  

N
II 10∈RR

1-m20
],[,,K  

 

Here mkI }1,,0{ −∈ K is a multi-index 

describing the cell and 12,,0 −= mj K  

numbers the vertex within the cell. For a CMY printer 

this is  

In Figure 1 the cell )1,1,0(=I  is emphasized. 

 

The CYNSN model for a CMY printer is defined as 

follows 

where I  is the multi-index corresponding to the cell 

that contains the C,M,Y values, n  is the so called 

Yule-Nielsen factor empirically modeling the optical 

dot gain and 
iIa  are the Demichel equations: 

Here II mc ,  and Iy  are the effective area 

converges normalized to the cell size, i.e. for cyan 

 

 

 

 

The model can be easily expanded for more than three 

colorants.  

 

To use the CYNSN model the control values must be 

transformed initially to the effective area coverages.  

This is typically performed in practice through the use 
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of one-dimensional lookup tables. 

Inverting the CYNSN Model 
 

To invert the CYNSN model by means of minimizing 

RMS spectral difference to a desired spectral 

reflectance r  the following constrained 

optimization problem has to be solved 

 

 

 

subject to 1,,0 ≤≤ YMC . 

 

Newton-based methods are often be used to solve 

optimization problems, since they have a very fast 

convergence rate. Unfortunately the CYNSN model is 

not differentiable on the cell edges, so Newton-based 

methods can not be used without modifications to 

guaranty the descent transition between cells. An 

additional drawback of Newton-based methods is the 

expense of calculating the Hesse-matrix, and solving a 

linear equation system in each iteration step. To 

overcome the latter drawbacks and to deal with the 

simple linear constraints Urban et al.15 proposed the 

Linear Regression Iteration (LRI) method.  
 
The LRI Method 
 

The LRI method was designed to invert the YNSN 

model. The method utilizes the multi-linearity of the 

YNSN in n/1  space, i.e. for each colorant the 

model can be decomposed linearly in n/1  space. 

For the cyan colorant of a CMY printer the YNSN 

model can be written as follows: 

 

where ),( YMAc  and ),( YMBc  are 

N dimensional vectors that are not dependent on cyan. 

For magenta and yellow similar decompositions of the 

model can be made. After setting the decomposed 

model equal to the given reflectance spectrum in 

n/1  space, the equation can be solved for cyan by 

simple linear regression: 

( )
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For fixed magenta and yellow the calculated cyan is 

the optimal value in the sense of the minimal RMS 

spectral difference in the n/1  space. 

  

Iterating this equation by successively recalculating 

the colorants and considering the constraint leads to 

the LRI algorithm with starting point 

),,( 000 YMC  
 

REPEAT { 

 1+= ii  
UNTIL TERMINATION 

 

Here the function F is defined as follows: 

 

 

 

 

Termination criteria are proposed in Urban et al.15 

where also a complexity estimation is given. For 

practical implementation the calculation of 

),( YMAc , ),( YMBc , ),( YCAm , ),( YCBm ,

),( MCAy  and ),( MCBy  can be performed as a 

matrix-vector multiplication, i.e. for ),( YMAc  

 

 

The 12 −mNx  dimensional matrix cA needs to be 

calculated only once, by simply expanding and 

rearranging the YNSN model. The 12 −m  

dimensional vector ),( YMx is newly calculated for 

each iteration step, i.e. 
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),( YCAm , ),( YCBm , ),( MCAy  and ),( MCBy  the 

implementation can be done similarly. 

 

Expanding the LRI method for printers with more 

than three colorants is straightforward. 

 

The advantage of the LRI method compared to 

Newton -based methods is its simplicity. For each 

iteration step only two matrix-vector multiplications 

are performed. There is no need to calculate gradients 

or Hesse matrices or to solve linear equation systems.  

 

The CLRI Method 
 

To invert the CYNSN model the transition of the 

iteration from one cell to a neighboring cell is of 

special interest. The proposed approach is based on 

the LRI method described in the previous section. By 

holding )1( −m  colorants fixed, the LRI method 

finds in each iteration step the optimal remaining 

colorant, in the sense of the minimal spectral RMS 

error in n/1  space. The idea of the cellular LRI 

(CLRI) method is similar: In each iteration step 

)1( −m  colorants are held fix, and only the 

remaining colorant is optimized. The domain of this 

colorant includes )1( −k  cells. Within this domain, 

only )1( −k  linear regressions need to be performed. 

Each linear regression consists primarily of two 

matrix-vector multiplications. To allow fast access to 

the precalculated matrices a scheme can be created as 

follows: 

 

Each cell is numbered with the multi-index I  and 

contains a plain YNSN model. For each cell I of a 

CYNSN model describing a CMY printer the 

following matrices can be calculated in advance, as 

described for the LRI method, and arranged to a 

)2( mmNx ⋅  matrix 

 
],,,,,[ I

y
I
y

I
m

I
m

I
c

I
c

I BABABA=AB  
 

Here the primaries of the cell I  are used in place of 

the Neugebauer primaries. 

 

By ordering all of these matrices according their 

multi-indices leads to the following matrix scheme: 

 

 

The final matrix AB  has the dimension 

)2())1(( mm mxkN ⋅−⋅ . 
 

The base algorithm of the CLRI method is similar to 

the LRI method. Only the calculation of the optimal 

colorant in an iteration step is replaced to consider 

more than one cell. Here, the method for the colorant 

cyan is described. For the plain YNSN model the 

following formula has to be calculated for the LRI 

method in each iteration step (see previous section): 

This formula is replaced by the following procedure, 

where I  is the multi-index of the cell containing the 

actual iC , iM , iY  values.  

 

FOR )1;1;0( +=−<= jjkjj  

{ 

IF 01 =+i
Ic  

  IF )0,,( ∗∗≠I  

   )1,0,0(−= II ; 
  ELSE BREAK; 

ELSE  

IF 11 =+i
Ic  

   IF )2,,( −∗∗≠ kI  
    )1,0,0(+= II ; 
   ELSE BREAK; 

 ELSE BREAK; 

} 

 

For the other colorants the procedure is similar.  
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By using the matrix scheme AB  for each colorant. 

the above procedure accesses matrices in the same 

columns. The transition from one cell to its neighbor 

is simply performed through seeking to the 

corresponding rows. The whole iteration is performed 

with normalized colorants. There is no need to 

calculate the actual colorants from the normalized 

colorants during the iteration. After the sequence 

converges the resulting normalized control values are 

then converted to the real effective control values, i.e. 

for cyan  

I
c
I

c
I

c
I cvvv=C

077
)(  

 

Results  
 

The CLRI method was tested using the cellular 

primaries of two printers: The Mutoh Falcon II printer 

and the HP Designjet Z3100 Photo printer. .Using the 

raster image processor (RIP) software Onyx 

ProductionHouse, 6 colorants of the Mutoh printer 

and 7 colorants of the HP printer were independently 

controlled. For this test 6 colorants for both printers 

were used. For the Mutoh printer, CMYKOG were 

used and for the HP printer the CMYKRG ink set was 

used. The number of grid points used for the CYNSN 

model was 3 for both printers. Additionally, a 4, grid 

point CYNSN model was analyzed for the HP printer. 

The grid point positions were optimized according 

Chen et al.9. The Yule-Nielsen n -factor for the 

Mutoh printer was 10 and for the HP printer 8. Both 

were optimized by means of the colorant ramps. 

 

The aim of this experiment was to validate the speed 

of convergence of the CLRI method and the accuracy 

of the results in terms of colorimetric and spectral 

RMS errors. Since the accuracy of the CYNSN model 

were out of the scope of this paper, each CYNSN 

model was considered to be accurate in his forward 

implementation.  

 

Only in-gamut spectra were considered for this 

analysis since the spectral gamut mapping minimizing 

the RMS difference in n/1  space, implicitly made 

by the CLRI method, often achieves visually poor 

results. Other research is looking at gamut mapping 

methods that are better related to human color vision.  

 

To ensure that only spectral reflectances within the 

spectral gamut of the printers were included, 1 million 

control values, with digital counts 
6255} 184, 131, 92, 64, 44, 29, 20, 13, {0, were 

selected with corresponding reflectance spectra 

computed by using the forward CYNSN model. The 

resulting reflectances were by construction within the 

spectral gamut of the printer and used to test the CLRI 

method. The value T0) 0, 0, 0, 0, (0,  was used as the 

starting point of the CLRI search. 

 

Table 1-3 show the colorimetric and spectral accuracy. 
*
00EΔ  values for three different illuminants CIE A, 

CIE D50 and CIE F11 were calculated.
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Figure 2 left: Cell primaries of a three grid point CYNSN model for the Mutoh Falcon 2 printer and right for the HP Designjet Z3100 
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 mean std max 
*
00EΔ  (A) 0.61 0.48 6.1 
*
00EΔ  (D50) 0.69 0.65 10.1 
*
00EΔ  (F11) 0.66 0.57 9.2 

RMS 0.004 0.004 0.054 

Table 1. CLRI accuracy for the Mutoh printer 

 

 Mean std max 
*
00EΔ  (A) 0.38 0.88 15.8 
*
00EΔ  (D50) 0.39 0.93 15.9 
*
00EΔ  (F11) 0.45 0.93 13.5 

RMS 0.002 0.004 0.092 

Table 2. CLRI accuracy for the HP printer (3 grid points) 

 mean std max 
*
00EΔ  (A) 0.27 0.69 18.9 
*
00EΔ  (D50) 0.27 0.68 19.8 
*
00EΔ  (F11) 0.31 0.68 20.39 

RMS 0.0019 0.004 0.088 

Table3. CLRI accuracy for the HP printer (4 grid points) 

 

Here the spectral RMS difference between two 

spectral reflectances 1r  and 2r  is calculated as 

follows: 

 

 

The average number of linear regressions needed for 

one inversion is shown in Table 4 

 

 Average number of linear 

regression / inversion 

Mutoh 332 

HP (3 grid points) 247 

HP (4 grid points) 492 

Table4. Average number of linear regressions / inversion 

 

Discussion 
 

The results showed that the CLRI method converges 

to reflectance spectra that are on average not 

distinguishable from the original. The mean and 

standard deviation of the *
00EΔ  color differences 

were far below 1. The large maximal color differences 

result from very dark samples, where small spectral 

RMS distances can result in huge color differences. 

Since the method minimizes the spectral RMS 

distances in n/1  space, large color errors can be 

the consequence. Therefore it is important to consider 

additional constraints for very dark spectra.  

 

The number of average linear regressions computed 

for one inversion seems high. The cause for this is the 

choice of the starting point in combination with the 

choice of the test spectra. The investigated spectra are 

mainly located in the dark area of the gamut, so many 

transitions between cells are necessary to reach the 

right cell. In practice it is not necessary to select a 

fixed starting point. For the reproduction of 

multispectral images, where neighboring pixels have 

in general high correlation, the starting points can 

depend on the previous calculation. So e.g. the 

resulting control value of the previous neighboring 

pixel can be chosen as the starting point of the current 

pixel inversion. With this technique the transitions 

between cells can be minimized and therefore the 

number of linear regressions. It should be noticed that 

linear regression for the CLRI method consists mainly 

of only two matrix-vector multiplications.  

 

Conclusion 
The Linear Regression Iteration (LRI) technique has 

been proposed for inversion of the cellular 

Yule-Nielson spectral Neugebauer (CYNSN) model. 

Each iteration consists mainly of only two simple 

matrix-vector multiplications. The matrices can be 

calculated in advance and arranged in a matrix scheme. 

The transition of the iteration from one cell to the 

neighboring cell is performed by choosing the right 

matrix from the matrix scheme.  

 

Using CYNSN models of two six-colorant printers the 
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performance of the method concerning colorimetric 

and spectral RMS accuracy and speed of convergence 

was investigated. The average accuracy was far below 

the just noticeable color difference. For very dark 

colors maximal colorimetric error can be high, even if 

the spectral RMS errors are small. To overcome this 

systematic drawback, additionally constraints need to 

be considered for dark colors. 
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